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MANUFACTURING: DOWNSTREAM, 
FILL/FINISH, AND DELIVERY

EXPERT INSIGHT

Advanced technologies enabling 
accessible and sustainable 
vaccine development and 
manufacturing for future 
pandemics 
June Kim and Anna Särnefält

The unprecedented speed and scale in vaccine development and manufacturing were key 
factors in ending the acute phase of the COVID-19 pandemic and lowering the rates of 
illness and death from SARS-CoV-2. Efforts to further accelerate vaccine development are 
still ongoing, with an increased focus on ensuring equitable access to vaccines and enhanc-
ing manufacturing sustainability with and without pandemic-scale demands. Significant 
advances have been made recently in the knowledge-based rational design of immunogens, 
the development of novel vaccine modalities, and the expansion of manufacturing capabil-
ities integrated with process analytical technology and digitization. This review highlights 
innovative technologies and the need for continuous investment toward realizing inno-
vations for the vaccine industry. In addition, alignment with global regulators is discussed 
to improve the practical implementation of the innovations and better prepare for future 
pandemics.
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INTRODUCTION 

The emergence of novel infectious dis-
eases has been a constant threat in recent 

years. Pandemics caused by SARS-CoV-1 
(2002–2004), Middle East respiratory syn-
drome (MERS) (2012–current), Western 
African Ebola virus (2013–2016), and 
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SARS-CoV-2 (2019–2023) are only a few 
examples in the last two decades [1–3]. At 
the time of writing, the outbreaks of mon-
keypox (mpox) in the Democratic Republic 
of the Congo are spreading to neighboring 
countries [4], and the highly pathogenic avian 
influenza virus is impacting dairy cows in 
multiple states in the US and raising concerns 
about the potential transmission to humans 
[5]. On August 14, 2024, WHO eventually 
declared the mpox outbreak a public health 
emergency of international concern [6]. 

As demonstrated during the COVID-19 
pandemic, obtaining marketing authorization 
for effective vaccines within 1 year of the pan-
demic being declared was crucial in controlling 
rapid viral transmission [7,8]. The rapid devel-
opment of COVID-19 vaccines was possible 
only because there were decades of research 
and development efforts for novel technolo-
gies, such as mRNA and viral vectors [9–11], 
and prior experience with vaccine devel-
opment against SARS-CoV-1, MERS, and 
respiratory syncytial virus (RSV) [1–3,7,12]. It 
reminds us again how critical it is to continue 
investment in vaccine technologies. 

In addition to the record speed of vac-
cine approval, an unprecedented number of 
COVID-19 vaccine doses were produced 
and administered in 2021. 12  billion doses 
of vaccines were forecasted to be manufac-
tured in 2021 by numerous developers [13]. 
BioNTech-Pfizer reported that 3 billion doses 
of Comirnaty were manufactured in 2021, 
within 12  months of the vaccine’s initial 
emergency authorization in December 2020 
[14]. AstraZeneca delivered 2 billion doses by 
November 2021, also within 12 months since 
its emergency use authorization was received 
in the UK [15]. About 4  billion doses of 
COVID-19 vaccines were administered glob-
ally by June 2021 [16]. 

Much investment and many resources were 
dedicated to COVID-19 vaccine develop-
ment and manufacturing [14,16]. However, 
there were numerous challenges and con-
straints in supply chains, scaling-up and 
scaling-out of the manufacturing processes 

worldwide. This led to substantial delays in 
vaccine manufacturing and the loss of mil-
lions of doses due to quality issues [16]. It 
suggests that there is still a significant need to 
improve manufacturing processes and control 
strategies to deliver robust performance, con-
sistent quality of vaccines at different scales 
and across different manufacturing sites, and 
better access. 

Sustainability has become important an 
important principle for the vaccine industry, 
emphasizing the need to produce more vac-
cine doses while using fewer resources. This 
includes optimizing the use of raw materi-
als, shrinking the manufacturing footprint, 
conserving human resources, minimizing 
energy consumption, and reducing the use 
of time, water, and other natural resources. 
It is important to advance vaccine manufac-
turing capacity globally and enhance vaccine 
accessibility. It aligns with the framework of 
Pharma 4.0, which includes the concept of 
digitization, automation, and artificial intel-
ligence in manufacturing, and still complies 
with the pharmaceutical regulatory guidance 
[17–19]. 

This review article highlights noticeable 
technical advancements made in recent years, 
from vaccine design to manufacturing. There 
are numerous disruptive technologies under 
development to better prepare vaccine devel-
opers and manufacturers for future emer-
gency. It could also be contemplated that 
the purposeful integration of key innova-
tions could help to realize CEPI’s 100 Days 
Mission [20]. A few examples in this article 
are taken from therapeutic areas rather than 
vaccines because those technologies present 
great potential for the vaccine industry. 

IMMUNOGEN DESIGN

The increased understanding of protective 
immunity and vaccinology has laid a solid 
foundation for the rationale design of potent 
immunogens [21]. SARS-CoV-1 could be a 
good example for vaccinology. The understand-
ing of the viral life-cycle of SARS-CoV-1 and 
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the role of spike protein (S protein), with its 
structural evolution on the viral infectivity, led 
to the finding that the ectodomain of S protein 
(known as S1) of SARS-CoV-1 was responsi-
ble for viral binding and fusion to host cells 
[22,23]. Especially, the prefusion state of the 
S protein exposes the receptor binding domain 
(RBD) and interacts with the cellular recep-
tor (ACE-2) to trigger viral infection [24,25]. 
Immunization with prefusion S protein or the 
RBD induces strong protection by eliciting 
neutralizing antibodies [24,26]. Similarly, the 
fusion protein (F protein) of RSV causes the 
viral membrane fusion with target cells and 
the prefusion F is dominantly subjected to 
neutralizing antibodies induced by infection 
[27–29]. As prefusion F is metastable, the mar-
ket-approved RSV vaccines by GSK (Arexvy®), 
Pfizer (Abrysvo®), and Moderna (mRESVIA®) 
all utilize the stabilized prefusion F protein by 
engineering the sequence [30–32].

The lessons from SARS-CoV-1 S protein 
and RSV F protein were successfully applied 
to SARS-CoV-2 vaccine development. 
SARS-CoV-2 is closely related to SARS-CoV-1 
in the Coronaviridae family. The S protein of 
SARS-CoV-2 is a class 1 fusion protein, the 
same as the S protein of SARS-CoV-1 and 
F protein of RSV [25,29]. The vaccine and pro-
phylaxis development against SARS-CoV-2 
were initiated with the stabilized prefusion of 
S protein as immunogens. Some market-ap-
proved SARS-CoV-2 vaccines are developed 
either with their entire prefusion S protein or 
the RBDs, highly immunogenic in eliciting 
neutralizing antibodies [33].

More powerful immunogens than the 
first-generation SARS-CoV-2 vaccines have 
been developed through structural and 
sequence-based rational designs. The first-gener-
ation mRNA vaccines by BioNTech-Pfizer and 
Moderna include the full-length S protein with 
two stabilizing mutations (K986P and V987P)
[33]. It was further discovered that six proline 
substitutions exhibit increased yields and stabil-
ity of S-protein (HexaPro) [34]. In addition to 
better manufacturability, the HexaPro induces 
more S protein-specific serum antibodies, 

broadly neutralizing antibodies against other 
SARS-CoV-2 variants and higher cellular 
immune response in animal models [35]. 

A similar structure-based engineer-
ing strategy was explored with the RBD. 
Sequence variants of ancestral SARS-CoV-2 
RBD presented improved manufacturabil-
ity, in terms of yields and stability, and also 
exhibited high-affinity binding to ACE-2 and 
broad protection against other SARS-CoV-2 
variants [36]. There have been continuous 
efforts to develop broadly protective vaccines 
to overcome viral escape [27,37–39]. More 
evidence suggests that heterologous antigen 
display or chimeric antigen confers a com-
petitive avidity advantage to cross-reactive 
B cells and, therefore, elicits broad protective 
immune responses [27,37,40,41].

The accumulated knowledge in engineered 
immunogen and structural/functional char-
acterization contributes to empowering com-
putational and AI-driven immunogen design 
for various novel pathogens and facilitates 
rational design of vaccines rather than empir-
ical approaches [42–46]. AI-generated, lab-
tested, and verified immunogen designs are 
being advanced to develop a vaccine library 
against ‘disease X.’ It could be the foundation 
to respond quickly to an outbreak with any 
related pathogens from the library [47–49]. 

WHO defines disease X as “the knowledge 
that a serious international epidemic could 
be caused by a pathogen currently unknown 
to cause human disease.” Disease X is a pri-
ority pathogen for WHO and CEPI [50,51]. 
Significant investment has been made in 
researching various viral families beyond 
known virulence, including the vaccine 
library development. It could enable rapid 
response to a health emergency, by achiev-
ing emergency use authorization of vaccines 
in 100 days from recognition of a pandemic 
pathogen (CEPI’s 100 Days mission) [7,52].

NOVEL MODALITIES 

By August 2023, more than 58 COVID-19 
vaccines were approved by WHO. These 
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vaccines are produced in various forms, such 
as RNAs, viral vectors, protein subunits, or 
inactivated viruses [12]. mRNA is a non-in-
fectious and non-integrating platform and 
has proven safe and efficacious during the 
COVID-19 pandemic. It can also be manu-
factured rapidly [10]. 

There are also alternative RNA technolo-
gies that could further improve RNA-based 
vaccines. Self-amplifying RNA (saRNA), 
trans-amplifying RNA (transRNA) and cir-
cular RNA (circRNA) are a few examples gar-
nering interest, which could compensate for 
some weaknesses of RNA vaccines. 

SaRNA contains alphavirus RNA replica-
tion machinery, and promotes amplification 
of RNA containing a gene-of-interest [53]. It 
is reported that saRNA is up to 100-fold more 
potent than mRNA; therefore, the saRNA 
dosage could be lower by two orders of mag-
nitude. It could lower the cost per dose signifi-
cantly compared to mRNA and potentially 
relieve the mRNA manufacturing burden 
[54–56]. A couple of saRNA vaccines already 
achieved licensure approvals for COVID-19, 
one in India and one in Japan [57,58]. 

As saRNA utilizes alphavirus replicon, 
safety concerns derive from the potential 
recombination with circulating alphaviruses. 
The risks appear to be minimal in laboratory 
experiments but the long-term safety impact 
needs to be studied carefully from real-world 
evidence [59]. 

TransRNA is a novel bipartite RNA system 
consisting of a vector encoding a gene-of-in-
terest and a second vector delivering the 
alphavirus RNA replication machinery [60]. 
It could alleviate manufacturing challenges 
of saRNA due to its size being larger than 
mRNA (~10,000 nucleotides (nt) for saRNA 
and ~1,000 nt for mRNA) [56]. The second 
vector delivering the replicon could be manu-
factured separately and used for various RNA 
vaccines carrying different genes of interest. 
Cellular translation of a gene-of-interest from 
transRNA is comparable to saRNA [60]. 

CircRNA is a covalently closed RNA mol-
ecule that lacks 5′, 3′ ends and polyA tails 

[61]. It exhibits high stability and RNase 
resistance and, therefore, can be stored at 
room temperature. It also presents longevity 
in vivo and, thus, prolongs antigen expression 
[61]. Optimized constructs of circRNA could 
increase translation in vivo by several hundred 
folds compared to mRNA [62]. The circRNA 
encoding SARS-CoV-2 RBDs showed supe-
rior humoral and cellular protection to 
mRNA encoding the same antigens in mice 
[63]. A major challenge in adopting circRNA 
for vaccines is its low production efficiency 
and difficulty in purification [64]. Significant 
manufacturing innovation is still required to 
promote circRNA application. 

Adenoviral vectors, such as type  5 (Ad5) 
and type 26 (Ad26), have been exploited as 
vaccines for decades. These adenoviral vec-
tor-based vaccines induced robust humoral 
and cell-mediated immune responses in clin-
ics but also presented mixed clinical outcomes 
with pre-existing immunity or vaccine-in-
duced thrombosis in a small population who 
received the vaccines [65,66]. Chimpanzee 
adenoviral vectors were used to immunize 
against SARS-CoV-2 infection. Heterologous 
immunizations with chimpanzee adenovirus 
type 6 (AdC6) and type 68 (AdC68) vectors 
presented robust immune responses in mice 
[67]. A type of chimpanzee adenovirus-vec-
tored SARS-CoV-2 (ChAdOx1 nCoV-19, 
Vaxzevria) was approved for use and dis-
tributed globally with billions of doses 
[68]. Vaccine-induced thrombosis was also 
observed in a small population that received 
ChAdOx1 vaccine [65]. A novel adenoviral 
vector such as gorilla adenovirus is explored 
as a vaccine against SARS-CoV-2 in animal 
models [69]. 

Virus-like particles (VLP) are nonin-
fectious nanoscale particles composed of 
self-assembling recombinant proteins. 
VLPs are safe, highly immunogenic, and 
versatile vaccine technologies in which 
various antigens could be incorporated 
[70–72]. The human papillomavirus vaccine 
(Gardasil®) and the Hepatitis B virus vac-
cine (Engerix-B®) are nonenveloped VLPs, 
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which do not contain lipid membranes [71]. 
There are enveloped VLP-based vaccines 
against SARS-CoV-2 currently under devel-
opment [73]. SpyTag/SpyCatcher-based VLP 
is used to elicit broad protection against 
coronaviruses. The affinity tags (SpyTag and 
Spycatcher) allow conjugation of 60 antigens 
on the nanoparticle to form either homotypic 
particles with one antigen or mosaic particles 
with multiple antigens [40,70]. 

Novel immunogens can be further devel-
oped to vaccines only if they can be manu-
factured and satisfy quality specifications for 
the intended use. There have been substan-
tial advancements in technologies leading 
to better productivity, quality, and control 
strategies for manufacturing across different 
modalities. Some of the key technologies are 
highlighted below.

CODON OPTIMIZATION 

Codon optimization has been a critical tech-
nology for the recombination of genetic engi-
neering for decades. It promotes the expression 
of a recombinant gene in a non-native host 
by reassigning the genetic codes favored by 
the host but does not alter the amino acid 
sequence [74–76]. Codon optimality is cal-
culated using algorithms developed with var-
ious rationales of codon usage bias in the host 
cells, which results in increased protein pro-
duction [74,77]. 

With increased computational capabil-
ity, often empowered by machine learning, 
advanced algorithms for codon optimization 
have been developed. There are well-estab-
lished codon optimization algorithms for 
Chinese hamster ovary (CHO) hosts, high-
lighting a significant increase in recombinant 
protein production post codon optimiza-
tion [78,79]. It is possible that this tech-
nology could improve the productivity of 
difficult-to-express immunogens for vaccine 
development. 

It was reported that codon optimization 
could influence the secondary structure of 
mRNA [46,80]. It has been discussed that 

the secondary structure of mRNA modulates 
mRNA translation efficiency by adjusting 
its half-life in  vivo. The higher-order struc-
ture of mRNA is also known to modulate 
mRNA stability and immunogenicity, which 
has a significant impact on its application 
for vaccine development [46,80–85]. Baidu 
LinearDesign, empowered by artificial intel-
ligence, generated mRNA without modified 
nucleosides but still yielded comparable or 
better immunogenicity and stability than the 
non-codon optimized mRNA with modified 
nucleosides [46].

DEVELOPMENT OF PROTEIN 
EXPRESSION SYSTEM 

Process development of protein-based vac-
cines could take many months due to sta-
ble cell line development and upstream 
cell cultivation process, especially when 
mammalian cell lines are used as expression 
hosts. Traditionally, random integration of 
genes-of-interest has been used to develop 
stable cell lines. It requires a series of pains-
taking screening rounds of millions of cells 
to choose the best clone, exhibiting desirable 
attributes in productivity, product quality, 
and stability to ensure consistent manufac-
turing of the protein-of-interest [86,87]. 

Instead of random integration, targeted 
integration of genes-of-interest could accel-
erate cell line development and improve pre-
dictability regarding the attributes of stable 
cell lines [88]. CRISPR/Cas9 is a gene edit-
ing tool that can deliver a heterologous gene 
to selected genome regions in a host cell. 
However, it can only insert a small gene, is 
error-prone, and, therefore, appears inad-
equate for cell line development [89–92]. 
Alternative gene editing technologies have 
recently emerged. Cas-CLOVER, a high-fi-
delity site-specific nuclease, can insert a large 
gene with high fidelity [89]. Large serine 
recombinases have presented precise inte-
gration of large genes (as big as 10 kb DNA) 
in human cells [93,94]. These gene editing 
tools are primarily developed for potential 
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therapeutic purposes, but the technology 
could be democratized for vaccine develop-
ment if proof-of-concept of these technolo-
gies can be demonstrated. 

Yeast cells, such as Pichia  pastoris or 
Saccharomyces  cerevisiae, are considered 
attractive hosts to express immunogens 
because they are safe, cost-effective, and con-
tain post-translational machinery. Therefore, 
these hosts have been utilized to express 
various recombinant proteins including vac-
cines [95]. It was reported that the RBDs of 
SARS-CoV-2 and multivalent RBDs of var-
ious SARS viruses, produced by P.  pastoris, 
presented durable immunity against the 
homologous viruses as well as heterologous 
viruses in the selected animal models [96–98]. 

Cell-free protein synthesis is another 
potential technology for vaccine develop-
ment. An advanced Escherichia  coli-based 
cell-free system has demonstrated protein 
yields up to several mg/mL, scalability, and 
versatility in application, as the function of 
E.  coli cell-free system can be enhanced by 
easy redesigning of the cellular machinery 
[99,100]. Engineered E.  coli cell-free system, 
which incorporates non-native amino acids 
to the target protein, have successfully pro-
gressed antibody-drug conjugate candidates 
to clinical phases [101]. 

Although eukaryotic cells have the advan-
tage over E.  coli of having cellular machin-
ery generating relevant post-translational 
modifications, the application of their cell-
free systems has been limited mainly due to 
the poor yields and scalability. A significant 
improvement has been reported lately with 
the system derived from Nicotiana  tabacum 
BY-2, named ALiCE®. ALiCE® presented a 
linear scale-up from a few microliters to 1 L 
and ≥1  mg/mL productivity of functional 
VLP for vaccine application [102]. It is also 
reported that difficult-to-express proteins 
could be produced better when the lysates of 
transiently transfected CHO cell lines with 
T7 RNA polymerase and the targeted inte-
gration into the CHO genome were utilized 
for the expression [103]. 

CONTINUOUS MANUFACTURING 
AND PROCESS ANALYTICAL 
TECHNOLOGIES 

A major lesson learned during and after the 
COVID-19 pandemic is that the capacity of 
vaccine manufacturing needs to be flexible 
and resilient to meet the rapidly changing 
vaccine demands from a few million doses to 
a few billion doses or vice versa. A potential 
technology enabling flexible vaccine manufac-
turing is a continuous manufacturing process. 

There is a growing number of implemen-
tations of continuous processing in the phar-
maceutical industry and it allows end-to-end 
process integration. It was simulated with 
a therapeutic monoclonal antibody man-
ufacturing process for the operational and 
economic impact of integrated continuous 
bioprocessing. This example indicated that 
the production capacity could be adjusted 
between 1 and 8-fold with a single-use bio-
reactor and an end-to-end integrated con-
tinuous process. It suggested that a single 
plant could be utilized flexibly for the rapidly 
changing market demands as needed [104]. 

In addition to flexibility, the improved sus-
tainability of continuous processing has been 
evaluated by calculating process mass intensity 
(PMI). PMI is a ratio of total input mass to 
product mass and, therefore,lower PMI indi-
cates better production efficiency per raw 
materials [105,106]. In general, continuous 
processing presented a multiple-fold better 
PMI than batch processing at the same scale. 
In general, the electricity usage and operation 
time of the continuous process were more effi-
cient than those of batch processing [104–107]. 
The improved environmental sustainability 
suggests that continuous processing could fit 
better in regions with limited natural resources 
and infrastructure for vaccine manufacturing.

It was reported that integrated continuous 
manufacturing for a recombinant vesicular 
stomatitis virus (rVSV)-based COVID-19 
vaccine, using perfusion cultivation and three 
chromatography runs in a counter-current 
mode, increased the vaccine productivity by 
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several folds [108]. It was also demonstrated 
that the continuous process could be further 
optimized to manufacture viral vaccines with 
better qualities [109]. 

Continuous manufacturing often comes 
with challenges in keeping consistent process 
controls, which can be overcome by the inte-
gration of process analytical technology (PAT) 
[110]. FDA guidance for industry summa-
rizes PAT as a system for designing, analyz-
ing, and controlling manufacturing through 
timely measurements (i.e., during processing) 
of critical quality and performance attributes 
of raw and in-process materials and processes, 
to ensure final product quality [111].

For successful implementation, appropri-
ate PAT sensors need to be defined, according 
to the intended target attributes to moni-
tor and the process steps to be integrated 
[112–116]. PAT acquires the measurements 
in real time or almost real time either in-line 
(directly in the process), on-line (in a built-in 
loop where samples are automatically fed), or 
at-line (samples are collected manually and 
analyzed next to the bioprocess site) modes 
[112,117,118]. The large amount of data 
acquired through PAT must be processed and 
analyzed via suitable data analysis models, 
qualitatively or quantitatively [112,114,116]. 
Eventually, the sensors and data analysis 
models should be validated to ensure the 
accuracy of generated data and its application 
for robust process control [119].

In practice, advanced PAT tools were 
applied to better control the manufacturing 
of live VSV with enhanced predictability of 
the quality of viral particles [120]. The inte-
gration of continuous processing and inline 
and online PAT tools was demonstrated suc-
cessfully for the pilot-scale production of a 
monoclonal antibody [121]. 

mRNA MANUFACTURING 
TECHNOLOGIES 

mRNA is produced in a cell-free system 
with well-defined platform processes [122]. 
It requires specialty reagents, such as T7 

polymerase, 5′ cap analogue, modified nucle-
otides (such as pseudo-uridine or N1-methyl-
pseudouridine), and ionized or ionizable 
lipids for formulation. These proprietary raw 
materials are expensive and, therefore, con-
tribute significantly to the total cost of mRNA 
manufacturing. It is often considered that 
mRNA cost-of-goods is too high to ensure 
equitable access to life-saving mRNA-based 
vaccines [123]. 

There are several strategies to improve the 
cost-effectiveness of mRNA production. A 
fed-batch IVT reaction led to better utiliza-
tion of T7 RNA polymerase, an increase in 
overall mRNA productivity, and, in turn, sig-
nificant cost reduction [124]. Recirculation 
and re-use of raw materials such as enzymes, 
cap analogues, or modified nucleosides, was 
evaluated in continuous bioprocessing of 
mRNA [123]. It was also reported that inte-
grated continuous processing of mRNA IVT 
and subsequent purification steps reduced 
overall operation costs [125]. QbD-based 
modeling helped to identify the optimal 
ratios of mRNA productivity to key raw 
material usage and, therefore, reduced waste 
of raw material usage [123]. 

As the economies of scale does not apply 
to mRNA manufacturing, small-scale and 
modular decentralized manufacturing could 
be rather economical for capital expense 
(CAPEX) and operation expense (OPEX). 
Decentralized manufacturing might also facil-
itate regional raw material supply and mRNA 
vaccine distribution [54,55]. The deployment 
of BioNTech’s modular manufacturing units 
(BioNTainer) to Rwanda is a noticeable 
example, enabling clinical and commercial 
manufacturing of mRNA vaccines in Africa 
[126]. Biofoundry, empowered by microflu-
idic systems and continuous manufacturing 
with advanced PAT, is an emerging technol-
ogy enabling the manufacture of mRNA in 
small scales at the point of care. Biofoundry 
development has been energized by funding 
from Wellcome Leap R3 program [127]. 

The size of saRNA (~10,000 nt for saRNA 
and ~1,000 nt for mRNA) makes it challenging 
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to formulate with lipid nanoparticles (LNP). 
An optimized lipid formulation yielded 80% 
encapsulation efficiency of saRNA, and it 
could result in a negative impact on stabil-
ity [56]. Instead of LNPs, cationic polymer or 
nanostructured lipid carriers were reported 
beneficial to saRNA formulation [128,129]. 
There are also emerging and unconventional 
mixing technologies that could potentially 
improve saRNA-LNP encapsulation, such as 
Micropore and FDmiX technologies.

DIGITAL TWINS

QbD is an important principle for devel-
oping manufacturing processes and control 
strategies. It allows developers to gain a better 
understanding of processes by identifying crit-
ical quality attributes (CQAs), critical process 
parameters (CPPs), and multivariate design 
space in systematic and resource-efficient 
ways. It is also the foundation for robust 
manufacturing with batch-to-batch consis-
tency [130].

Combined accumulated knowledge and 
experience in QbD principles, with empiri-
cal and mechanistic models describing each 
unit operation, could further enhance pro-
cess analyses, controls, and decision-making 
[131]. The model-based approach also enables 
in silico simulation to accelerate development 
and ease uncertainties related to scale-up 
and technology transfer [109,131,132]. The 
process model of each process step could be 
integrated to depict the end-to-end opera-
tion and the integrated process model could 
assist FMEA-based risk ranking to determine 
CPPs and their proven acceptable range for 
all CQAs in a holistic way [115,133,134]. 

Moving forward, process models are pivotal 
tools for digital twin development. A digital 
twin is a digital replica of physical processes 
or systems connected with the physical sys-
tems through automatic data flow [135,136]. 
The models, presenting the digital replica, are 
calibrated and validated against the process 
data. Afterward, those could be integrated 
into manufacturing processes and PAT. The 

real-time process data collected by PAT are 
fed into the models so that they can prompt 
the advanced process controls to maintain the 
process performance within the design space 
and the quality of the product within the 
specifications. Ultimately, it can lead to auto-
mation of the entire manufacturing process 
and real-time release [130,137–140]. 

The proofs-of-concept of digital twins 
have been demonstrated in various applica-
tions, such as mRNA-based COVID-19 vac-
cine manufacturing [125], VLP production 
[130,138], pDNA clarification process [141], 
lyophilization [142], and quality control labo-
ratories [143]. As the successes of digital twins 
are mostly achieved at the lab scale, the vali-
dation of digital twins at the manufacturing 
scale is further required to realize their poten-
tial for vaccine manufacturing. 

CONCLUSION 

As presented in this article, there are sig-
nificant technical advances happening in 
vaccine development and manufacturing. 
These innovations provide vaccine develop-
ers and manufacturers with the capabilities 
to develop vaccines rationally rather than 
empirically, fine-tune the manufacturing pro-
cesses for high quality and productivity, and 
better control manufacturing for robustness 
at various scales and sites. These can signifi-
cantly increase the probability of success for 
the rapid development of novel vaccines, and 
equitable access, to better respond to the next 
pandemic. Furthermore, integrating innova-
tive vaccine technologies and the Pharma 4.0 
framework could generate powerful synergies 
toward the 100 Day mission, utilizing the 
digital transformation to increase manufac-
turing sustainability [19,144,145]. 

Harmonization with pharmaceutical reg-
ulators is critical in adopting innovation 
toward Pharma 4.0. In the past decades, reg-
ulators have published important guidance 
for industry, which could facilitate the adop-
tion of Pharma 4.0. It includes ICH Q8(R2), 
Q9, and Q10 for QbD-based development, 
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risk assessment, and continual improvement 
in quality systems, respectively. ICH Q13 
for continuous manufacturing and Q14 for 
advanced analytical development based on 
QbD could contribute to the adaptation of 
Pharma 4.0. In addition, the FDA recently 
issued a guidance for advanced manufactur-
ing technologies designation program, which 
paves the regulatory path to implement 
innovative technologies in manufacturing 
processes. FDA also published discussion 
papers regarding AI and machine learning 
in drug development and manufacturing 

and sought public feedback [146,147]. In 
parallel, the EMA organized the Quality 
Innovation Group to learn about innova-
tive technologies from the public [148]. The 
synergy between innovators and regulators 
will further accelerate the advancement of 
Pharma 4.0. 

As Pharma 4.0 is in the early stages, sig-
nificant investment is still required to gener-
ate more evidence to build stronger business 
cases and realize its benefits for accessible 
and sustainable vaccine development and 
manufacturing. 
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MANUFACTURING: DOWNSTREAM, 
FILL/FINISH, AND DELIVERY

EXPERT INSIGHT

Advanced drying technologies 
for vaccine products
Sue Behrens

Vaccines continue to be the frontline protection against infectious disease, preventing epi-
demics and taming outbreaks. Distribution of vaccine products is challenging; product qual-
ity must be protected during shipment and storage to ensure stability throughout shelf-life. 
Drying is a critical process for removing water and oxygen to prevent product degradation. 
Recent advances in technologies for aseptic drying may provide significant benefits in prod-
uct quality, supply reliability and productivity, with reduced cost. 

This review discusses factors that must be considered during product development 
across the range of currently available vaccine formats. Current operations are predomi-
nantly based on lyophilization processes using heating fluids in the shelves to sublimate 
vapor from product in vials. Over the last decade, equipment design has progressed to allow 
new options for final product manufacturing, including potential for continuous processing. 
Microwave energy is being developed as a new heating source with more homogeneous 
penetration leading to faster drying cycles. Spray-drying and spray-freeze drying are now 
available for aseptic production of a flowable bulk powder for dosing in a wide variety of 
container closure systems. These novel systems are driving reductions in cost and improved 
cycle time, while maintaining product sterility and stability. 

Vaccine Insights 2024; 3(7), 249–263

DOI: 10.18609/vac.2024.040

INTRODUCTION

A broad set of manufacturing operations are 
used in making vaccines. Production of the 
Drug Substance requires a number of differ-
ent product steps, which are often combine 
in dedicated processes for each vaccine. The 

final Drug Product steps transform large 
volumes of bulk drug substance into patient 
doses. Patient doses can be provided in mul-
tiple images or formats—liquid or dried in 
vials, syringes or other novel dosage forms. 
Aseptic manufacturing facilities can generate 
many different types of products as long as 
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they share the same final image. This review 
will describe key considerations for final 
product design for vaccines, including com-
position and alternatives for drying process 
steps needed to ensure stability and quality 
throughout shelf life. 

Distribution of thermally unstable vaccines 
leads to several challenges. These products 
are biologic in nature and subject to thermal 

degradation [1]. A controlled environment is 
required to ensure quality is maintained until 
patient administration. Very large warehouses 
are needed for cold storage early in the supply 
chain: refrigeration at 2–8°C, frozen storage 
at 20°C or even 80°C may be needed. Smaller 
scale refrigeration and freezers are needed for 
intermediate storage along the distribution 
chain and in clinics [2,3]. Validated shipping 

	f FIGURE 1
Multiple vaccine platforms evaluated for COVID-19 protection [14].
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containers are essential, all the way to deliv-
ery in ‘the last mile’, where transportation 
may be a healthcare worker on a camel, a 
bike, hand-carrying a cooler or other local 
transport [4,5]. Recently, remote operated 
drones have been used to deliver vaccines 
to areas that are difficult to reach [6,7]. The 
vaccines must be protected against both heat 
and freezing, which means that temperature 
should be monitored, continuously if possi-
ble. Data loggers and vial vaccine monitors 
minimize waste by allowing identification of 
each container or vial that may exposed to 
temperatures outside the acceptable range 
[8,9]. Over the last decade, remote tempera-
ture sensors using internet-of-things technol-
ogy have been developed and efforts focused 
on blockchain technology for tracking and 
security were initiated [10–13].

The COVID pandemic prompted devel-
opment of new types of products, with lim-
ited time for process optimization (Figure  1). 
The earliest products were based on novel 
platforms using mRNA and viral vector 
DNA, which allowed rapid development 
and licensure due to prior work on gene 
therapy products. The mRNA (Comirnaty®, 
SpikeVAX®) and DNA products (Jcovden®, 
Vaxzevria®, Covishield, Convidecia) were 
quickly manufactured and used to mitigate 
the rapidly spreading pandemic in the US 
and Europe. In addition, inactivated virus 
products (Covaxin™, Covilo, CoronaVac) 
were used in many countries around the 
world. Later, recombinant protein subunit 
vaccines (Covovax, Nuvaxovid®) contributed 
to developing protection for COVID-19. 
For many years, other platforms, including 
virus-like particles, live attenuated virus, bac-
terial membrane polysaccharides and toxoids 
have been important for control of infectious 
disease. 

Each type of vaccine has unique stability 
characteristics, depending on product-specific 
degradation pathways and kinetics [15,16]. 
To ensure product quality, the manufactur-
ing process must safeguard both sterility and 
potency throughout the shelf life. The wide 

diversity of vaccine products requires differ-
ent product formulation (composition) and 
processing (unit operations) for each different 
platform. The earliest COVID vaccines were 
developed without time for development of 
optimal formulation & process for stability, 
which required complex frozen cold chains 
for delivery to and use in clinics [17,18]. 
Efforts are in progress to improve stability for 
these novel vaccine formats, allowing broader 
use in the future [19–23]. 

Drying is a critical process for removing 
water and oxygen to prevent product degra-
dation. These unit operations add both man-
ufacturing cost and complexity for process 
control. However, the drying step will extend 
stability up to 3 years and enable distribution 
at ambient temperatures during shipment. 
The improvement in product stability enables 
a supply chain without requiring significant 
increase in shipment volumes [24]. Recent 
advances in technologies for vaccine drying 
may provide significant benefits in product 
quality, supply reliability and productivity 
with reduced cost.

VACCINE PRODUCT DESIGN

There are several potential components in a 
final product in addition to the antigen or 
antigen-generating nucleic acid. Often, an 
adjuvant is added to increase activation of 
the immune system and improve effective-
ness. It is necessary to add buffers, product 
stabilizers, preservatives, and/or surfactants 
to control microbial contamination risk and 
ensure clinically effective products [25]. Lipid 
nanoparticles (LNPs) are used as a delivery 
mechanism and contribute as stabilizers for 
mRNA products in vivo [18]. Depending on 
the product image, diluent for reconstitution 
will be incorporated into the product or pro-
vided in a companion vial. 

During product formulation and pro-
cess development, degradation pathways 
are identified to assess the stability impact 
of changes in the manufacturing process 
and product composition [1,26]. Two of the 
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most important concerns for biologics are 
hydrolysis, which often results in opening 
peptide bonds, and oxidative degradation of 
amino acids, which may change molecular 
structures. Other pathways include deamida-
tion and reduction reactions. Both chemical 
degradation and mechanical stress can cause 
physical changes, including aggregation and 
denaturation [27]. 

These molecular modifications result in 
product quality changes that can lead to a 
loss of function, off-target immunogenicity, 
or other adverse effects. A single change in the 
molecule can render it completely ineffective, 
depending on where the structure is affected. 
On the other hand, there are changes that 
have no impact because they are in an area 
unrelated to product activity. Due to the com-
plexity of the antigen and adjuvants used in 
vaccine products, it is difficult to understand 
all the possible changes and their impact [28]. 
In general, product and process development 
scientists endeavor to minimize any impact 
during manufacture. 

Therefore, all factors that drive degrada-
tion must be controlled and monitored in 
the drug product. These include pH, oxygen 
levels, and water activity in the system. All of 
these are important in both hydrolysis and 
oxidative pathways. Certain buffer species, 

ionic strength, and presence of trace metals 
can impact the stability of a product. Finally, 
exposure to light, multiple freeze-thaw cycles, 
and exposure to shear can cause product 
damage. 

Product stability can be ensured by adding 
different types of stabilizers, which are iden-
tified during formulation studies depending 
on the type of product, degradation risks, and 
route of administration. Stabilizers include 
cryoprotectants, oxygen scavengers, proteins, 
gelatin, polyethylene glycol, and specific buf-
fers to control pH [27,1]. 

Increases in temperature accelerate degra-
dation across all pathways. Once the product 
composition has been defined by formulation 
scientists, environmental controls are neces-
sary throughout manufacture and distribu-
tion [29]. Reduced temperatures, whether 
refrigerated or freezing, will protect product 
quality. Many degradation pathways can be 
limited by reducing the presence of water and 
oxygen and products are dried through lyo-
philization or spray drying and introducing 
an inert gas into the headspace [30]. 

Each type of vaccine is vulnerable to degra-
dation pathways in various degrees and must 
be maintained under different conditions to 
ensure quality throughout shelf life. Table 1 
summarizes platforms for vaccine products 

  f TABLE 1
Vaccine product images and storage conditions.

Product image Long-term storage conditions
Liquid Frozen 

liquid
Dry Ambient 2–8° C -20° C -80° C

Live attenuated 
virus � � �

Inactivated 
virus/bacteria � � �

Virus-like 
particle � �

Subunit—
protein, 
polysaccharide

� �

Viral vector � � � �
DNA � � � �
mRNA/LNP � � � � �

�: applicable; �: potential.
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and the types of final product used for each, 
along with long-term storage conditions. 
Frozen conditions can protect products in 
solution, but results in complex manufactur-
ing and supply chain challenges [31,32]. Some 
liquid products cannot be frozen without 
impacting product quality, which is partic-
ularly important for those containing alumi-
num adjuvants. However, dried products can 
be stored at higher temperatures, often with 
less impact of temperature variation in ship-
ping, minimizing quality risks. 

For each new vaccine, a process must be 
defined to manage the specific risks associ-
ated with storage, shipping, and distribution. 
Enhanced product stability will minimize sup-
ply chain complexity. Thus, drying steps in 
vaccine manufacturing are critically important 
[33,34].

Dried vaccine product is packaged in a vari-
ety of containers, which drives the operation 
selected for final dry product processing. The 
majority of vaccine products have been com-
mercialized in vials, resulted in high global 
capacity for these images. Vial filling machines 
are very fast, flexible for different sizes of vials, 
and available in manufacturing sites around 
the world. In addition, vial filling capacity can 
be shared with liquid products, increasing uti-
lization and the financial return for the high 
capital investment in aseptic filling facilities. 

Lyophilization equipment has been designed 
to optimize production of single or multidose 
units in glass vials [33]. For lyophilized prod-
ucts, a custom diluent may be needed, which 
doubles the demand for filling capacity. The 
need for additional components and second 
manufacturing operations increases cost of 

	f FIGURE 2
Process operations for liquid and lyophilized products [38].

Filling and
stoppering

RTU components

Clean, dry, empty vials

Sterilised, empty vials

Filled, stoppered vials

Product to be lyophilized

Lyophilized product Capped, crimped vials

Washed, dried, final vials

Packaging

Liquid-filled product

Depyrogenation
tunnel

Auto-loaders
and unloaders

Lyophilizers Capping and
crimping

External vial
washing

Method development
and expand your 

design space Trayloaders

Vial washers

ENABLED



Vaccine Insights; DOI: 10.18609/vac.2024.040

VACCINE INSIGHTS	

254

goods sold [35]. At patient administration, 
two sets of materials introduce extra steps and 
increase the risk of error in the clinic. Hence, 
dual-chamber options have been developed for 
convenience of reconstitution [36]. 

Vaccines are typically administered paren-
terally, and the final stages of manufacturing 
must be done under aseptic conditions [37]. 
Containers must be washed and sterilized in 
line or purchased ready-to-use at increased 
cost. Filling into the container is the first 
product step. Products to be lyophilized are 
only partially stoppered prior to transport 
to the lyophilization cabinets. Systems have 
been designed to allow direct transfer from 
filling lines to the cabinets to assure continu-
ity of aseptic conditions for the product and 
containers. Traditional lyophilization in  situ 
processing removes water vapor from final 
product containers, using heat under deep 
vacuum conditions. The steps (Figure 2) in a 
traditional lyophilization process include [38]:

1.	 Filling: product is dispensed into vials to 
ensure consistent dosing

2.	 Stoppering: vials are partially stoppered to 
allow water vapor to escape

3.	 Loading: vials are transferred into the 
lyophilization cabinet

4.	 Freezing: energy is removed to rapidly 
freeze the product 

5.	 Primary drying: vacuum is applied, 
sublimation occurs at low temperatures

6.	 Secondary drying: vacuum is maintained 
with heating to remove bound water to 
meet low moisture content

7.	 Vacuum release: sterile gas is introduced 
to return cabinet to atmospheric pressure; 
dry, inert gases are often used to protect 
product

8.	 Stoppering: stoppers are completely 
inserted to close the vials prior to 
exposure to ambient conditions

For dual-chamber syringes, differences 
in the process require specific equipment to 
allow lyophilization in the syringe, followed 
by filling of diluent and application of liquid 
stopper and plunger [36]. Since the equipment 
is dedicated to this type of product, ensuring 
proper utilization can be difficult. The cost 
for dual-chamber products is increased by 
the number of components, number of steps, 
and the reduced capacity of the equipment. 
Although these products simplify adminis-
tration, additional manufacturing steps are 
required to lyophilize in one chamber and fill 
diluent into the second chamber. 

Another recent product format for dried 
products is based on microneedles, which 
deliver product across the outermost later of 
the skin into dermal tissue below. These sys-
tems are convenient for administration and 
minimally invasive with slight to no pain 
reported by patients. In addition, product 
deposited on to the microneedles is dried 
and very stable. Vaccine microarray patches 
(VMAPs) are an important option for 
increasing access to vaccines and improved 
global health [39,40]. 

VMAPs can be generated using one of sev-
eral different methods (Figure  3) [41,42]. The 
microneedles can be used to generate cavi-
ties for introduction of the vaccine or coated 
with the active product. The active product 
can be formed in the microneedles, which 
would dissolve into the tissue. The micronee-
dles may be hollow with the antigen solution 
introduced through the needles in more tra-
ditional manner, or the microneedles may 
form hydrogels which release the product. 
Due to the minimal product depth on each 
needle, the drying step may use vacuum or 
direct exposure to dry air at ambient pressure. 
System design for each configuration may 
require different process operations. 

Full-scale manufacturing methods and 
capabilities for VMAP products are being 
established globally [43]. Identification and 
resolution of technical and regulatory chal-
lenges is underway to allow commercializa-
tion of these products [44,45]. 
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VACCINE DRYING 
TECHNOLOGIES

Advances in manufacturing technologies for 
dry vaccine product provide capabilities for 
new product images, with increased pro-
ductivity and improved quality assurance. 
Decreasing the duration of the drying oper-
ation provides a significant opportunity for 
increased productivity. The major limitation 
for cycle completion is the rate of mois-
ture removal, which is often constrained 
to maintain low product temperature and 
protect product stability. Both heat and 

mass transfer must be properly controlled 
throughout the process to deliver an optimal 
cycle [46, 47].

Hence, improvements in heat and mass 
transfer will significantly shorten cycle times. 
This principle can be applied to drying for all 
product types, including vials and dual cham-
ber devices. Some of these technologies allow 
drying in  situ, while others generate a dried 
product that must be distributed into con-
tainers at the proper dosage. Production of 
a bulk dried product provides opportunities 
for development of novel formats beyond the 
typical vial, with improved stability.

	f FIGURE 3
Options for development of microarray patches [41].
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For the last century, the most common 
drying process used for vaccines has been lyo-
philization. Aseptic lyophilization cabinets 
use heating fluid flowing inside each shelf to 
freeze the product and to drive vaporization 
and remove water from the product. For both 
freezing and heating, energy must be trans-
ferred across the shelf through the bottom of 
the glass vial and the full volume of the prod-
uct, which can be inefficient. Vapor removal 
occurs through a condenser operating under 
vacuum, which often results in inhomoge-
neities throughout the cabinet due to mass 
transfer differences at the walls, between the 
shelves, and various vial locations on the 
shelves. 

Any process improvements must meet 
aseptic requirements to provide appropri-
ate product quality. The equipment must be 
sterilized and operated in a highly controlled 
environment to maintain the highest lev-
els of sterility assurance; current trends for 
new installations include implementation of 
closed systems wherever possible. All inputs 
must be sterilized at the point of use through 
sterile filtration or aseptically introduced as 
pre-sterilized materials. The room classifica-
tion is determined based on the equipment 
design and interventions required. 

IN SITU DRYING PROCESS 
ALTERNATIVES

Currently, in  situ drying in final containers 
such as vials and dual-chamber syringes is the 
most common method for commercial prod-
ucts. Lyophilization cabinets are the most 
common process equipment. Improvements 
in traditional lyophilization have been inves-
tigated for all steps in the cycle. The freezing 
step is critical to allowing a proper porous 
macroscopic structure and enhanced mass 
transfer for vapor removal. Developments 
have focused on improved control of nucle-
ation and increasing surface area for dry-
ing steps (Arsiccio 2020; Assegehegn 2019) 
[48,49]. Primary and secondary drying steps 
can be improved by focusing on the delivery 

of energy to drive vaporization inside the 
container. Heat transfer required from the 
shelf fluid through shelves to the glass is often 
inefficient due to space. Continuous process-
ing could lead to improvements in productiv-
ity as well as consistency.

VACUUM FOAM DRYING 

Foam drying does not require freezing and 
is conducted at ambient temperature under 
vacuum for evaporation [50,51,52]. The bub-
bles that form provide membrane-like areas 
with high surface area for drying [53]; process 
development focuses on controlling the size 
of the bubbles and the thickness of the mem-
brane to ensure a rapid and efficient drying 
process [54]. The high surface area generated 
during this process will lead to reduced recon-
stitution times. Due to the increased volume 
of dried foam product, larger containers are 
required for the same dosage.

MICROWAVE VACUUM DRYING 

Microwave energy can be used to replace 
heating fluid in the shelves, with application 
in traditional lyophilization cabinets that 
could allow continued use of current equip-
ment. Rapidly cycling water molecules in a 
microwave field results in heating at or near 
the molecular level and evaporation of water 
without significant heating of sensitive prod-
ucts [55]. In addition, the energy penetrates 
immediately across the entire system without 
generating localized heat and mass transfer 
effects observed in traditional lyophilization. 
Frequency control of the microwave field 
provides a tool for optimization of the system 
during process development for individual 
products [56].

Microwave vacuum drying (MVD) tech-
nology has been demonstrated for vaccines 
and other biopharmaceuticals [57,58]. The 
energy necessary for sublimation is provided 
by magnetrons, which generate microwaves 
in the drying chamber. A dry ice condenser 
is used to condense the water vapor, and 
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product vials are stoppered at completion of 
the process. 

Merck [59] investigated MVD using 
EnWave pilot scale systems, where the 
product is frozen offline in vials and trans-
ferred to a FreezeREV® dryer. Cycle times 
for MVD were 87% shorter than for lyo-
philization. Results from the early pilot-scale 
study showed equivalent moisture content 
and activity when compared to traditional 
lyophilization. 

CONTINUOUS PROCESSING 

Continuous production systems improve 
productivity by increasing equipment utiliza-
tion. Continuous lyophilization methods for 
vial products that leverage existing principles 
and vial filling capacity would be the simplest 
to implement [60].

A continuous process for in situ drying was 
proposed by Pisano and colleagues [61]. Vials 
are moved through modules, using specially 
designed transfer connections to maintain the 
appropriate pressure, temperature, and gas 
composition for each. This system was designed 
as an opportunity to produce dry product in 
a rapid and continuous manner using tradi-
tional and familiar process operations. 

BULK DRYING PROCESS 
ALTERNATIVES 

Improvements in heat and mass transfer can 
be achieved through more direct contact of 
the vaporizing energy and moisture removal 
medium with the product. The presence of 
containers and stoppers during in situ drying 

processes is the main source of resistance 
leading to increased cycle times. Efforts to 
improve efficiency of the drying operation 
have focused on producing dried bulk prod-
uct, followed by dispensing in unit dose 
containers. 

Overall, the number of process steps 
remains the same as for in  situ drying, 
although the order of filling and drying steps 
is reversed (Figure   4). Manufacture starting 
with dry product in bulk requires aseptic 
powder filling capability, with flexibility for 
novel reconstitution-injection systems [62]. 
Aseptic powder fillers have been in use to fill 
sterile antibiotics and other parenteral prod-
ucts since the mid-1900s. The process can be 
challenging for amorphous materials due to 
inconsistency in powder flow and segregation 
of product and excipients during material 
handling. While blending and milling are 
often required to achieve particle size targets 
for materials produced by spray-drying, these 
extra steps are not common for injectables as 
they are reconstituted and administered after 
dissolution. Larger pellets can also be filled 
using variations of existing powder filling 
equipment. The risks of generating fine par-
ticulates and contamination of external vial 
surfaces are also reduced when filling mate-
rial is composed of structured particles versus 
amorphous powder. 

Implementation of bulk drying followed 
by powder filling provides new opportuni-
ties to support a broader range of images. 
Maintaining homogeneous composition with 
improved flowability of bulk materials pro-
vides the opportunity for consistent product 
quality at reduced costs. 

SPRAY DRYING 

Spray drying, which results in a dried powder 
comprised of spherical particles, is the focus 
of many recent advances for production of 
stable vaccine products [63]. In spray drying, 
a liquid with excipients flows through a noz-
zle that disperses the product into fine parti-
cles. In the traditional mode of spray drying, 

	f FIGURE 4
Traditional lyophilization compared to bulk drying 
processes.
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hot gas flows through the system to drive 
evaporation. Aseptic processing requires ster-
ile gas for product drying; an inert gas such 
as Nitrogen or Argon may be used to limit 
oxidative degradation.

For many applications, the gas tempera-
ture can be up to 120°C, which could cause 
degradation of sensitive biologic products, 
although short-term exposure and evapora-
tive cooling will limit product temperature. 
Advantages of spray drying include a homo-
geneous feed containing the final formulated 
product, the ability to control particle size by 
tuning the spray nozzle, and an opportunity 
for continuous operation.

Aseptic designs that allow for continu-
ous drying and powder production using 
spray drying are available. One example is 
the Aseptic SD™ system from GEA Niro 
(Soeborg, Denmark). The system uses a 
standard spray-dryer design, which has been 
upgraded to allow sterilization and aseptic 
operation [64]. Another system developed 
by Ziccum AB (Lund, Sweden) uses a mesh 
nebulizer to create spherical droplets in a 
dry nitrogen laminar flow. In addition, dry 
nitrogen is provided in counter‐current flow 
along a membrane to remove moisture from 
the gas. The system runs at ambient tempera-
tures to limit heat stress on sensitive products. 
Proof‐of‐concept of the technology has been 
demonstrated for mRNA–LNP products 
with excellent results for maintaining encap-
sulation efficiency, particle size, and distribu-
tion, and in vitro and in vivo mRNA activity 
[65,23]. Other examples of alternative tech-
nologies are discussed below.

SPRAY FREEZE-DRYING

Spray freeze-drying is an alternative devel-
oped to provide advantages of spray drying to 
the established lyophilization process [66, 63]. 

The steps include droplet freezing, followed 
by vacuum sublimation in a drying chamber. 
Historically, freezing prior to sublimation has 
provided quality product with strong stability 
profiles. Incorporating spray-freezing elim-
inates the requirement to fill product into 
containers prior to drying. In addition, there 
is a strong regulatory understanding of qual-
ity parameters for lyophilization which mini-
mizes regulatory risks for transition to a new 
process. Two commercial equipment vendors 
currently provide spray freeze-drying options. 

IMA Life, Tonawanda, NY, USA, has 
designed a continuous spray freeze dryer [67]. 
Droplets are generated from the spray noz-
zle and frozen as they drop through a liquid 
nitrogen-cooled column, which leads to the 
formation of small diameter spherical parti-
cles. The frozen spheres transit multiple spaces 
on shelves through different levels of pressure 
and temperature to achieve a low-moisture 
product. The final product is filled directly 
into an appropriate container, which is sealed 
in an aseptic manner to be used as a feed for a 
powder filling system. 

Meridion, Müllheim, Germany, has built 
systems based on droplets freezing in a tower 
followed by vacuum drying of the frozen pel-
lets in a unique rotating drum, with demon-
strated product yields of up to 97% [68].

CONCLUSION

Vaccines continue to provide significant ben-
efits for global public health. Improvements 
in manufacturing for these products will 
enable broader access for products that are 
more stable and convenient to administer at 
lower cost. Alternative systems are in devel-
opment to provide opportunities for more 
efficient manufacturing of dried vaccines, to 
achieve highest possible quality and support 
additional product formats.
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“Proper resourcing includes dedicated 
budgets for spare parts, fuel, maintenance 
supplies, and specialized training programs, 
as well as a reliable supply chain to ensure 

timely availability of necessary components.”
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Maintaining vaccines at optimal tempera-
tures in resource-constrained environments, 
like Nigeria, presents significant challenges 
[1]. Strengthening cold chain systems is 
vital for ensuring reliable vaccine delivery 
to all communities, thus achieving univer-
sal health coverage, and reducing zero-dose 
children [2]. This article presents findings 
from a recent assessment across 12 Nigerian 
states and insights from the Cold Chain 
Data Hackathon Workshop held in Kenya 
[3], to offer advice on addressing the chal-
lenges of cold chain systems in low-resource 
settings.

Immunization is one of the most cost-
effective public health interventions [4], yet 
vaccine-preventable diseases account for over 
22% of childhood deaths in Nigeria and 
other low- and middle-income countries 
[5,6]. Inefficient cold chain systems lead to 
vaccine spoilage and wastage, undermining 
immunization efforts. 

CHALLENGES IN COLD CHAIN 
MAINTENANCE: INSIGHTS  
FROM NIGERIA

Cold chain maintenance in Nigeria faces 
structural issues common to resource-limited 
settings. Aging equipment frequently fails to 
maintain optimal temperatures, with only 
55.2% of state and 63.2% of local facilities 
currently functional [7]. Shortages of skilled 
technicians impede timely repairs, and lack 
of regular training can cause suboptimal use 
of tools and spare parts. Limited funding 
further restricts routine maintenance, reduc-
ing the availability of functional equipment. 
Additionally, poor data integration hampers 
diagnostics, and the absence of a decommis-
sioning plan for unserviceable equipment fur-
ther decreases efficiency. A phased approach 
prioritizing foundational maintenance, 
capacity building, and data integration is 
critical to reinforcing vaccine delivery and 
supporting continuous immunization across 
Nigeria.

PHASED APPROACH TO 
STRENGTHENING COLD  
CHAIN SYSTEMS

Countries must first invest in procuring 
high-quality cold chain equipment and 
replacing aging, obsolete models to establish 
a foundation of reliable, current-generation 
equipment. With this base in place, the next 
priority is to maintain the proper function of 
equipment through consistent maintenance, 
training, and reliable funding. Programs 
like the Gavi Cold Chain Equipment 
Optimization Platform [8] demonstrate how 
targeted investments in both equipment 
renewal and ongoing upkeep can reinforce 
long-term cold chain performance.

Next, the focus should shift to building 
a dependable maintenance capacity. This 
involves increasing the number of trained tech-
nicians, bolstering their skills through ongoing 
capacity-building initiatives, and maintaining 
an adequate inventory of spare parts.

Once equipment is in place and a regu-
lar maintenance schedule established, data 
integration becomes essential for optimiz-
ing maintenance efforts. Real-time data and 
system-wide analytics can enable predictive 
maintenance, enhance vaccine logistics and 
inventory management, and increase the 
overall efficiency and value of maintenance 
activities. This phased approach ensures cold 
chain systems operate at peak performance to 
safeguard immunization programs.

LEVERAGING DATA  
AND INNOVATIVE APPROACHES 
FOR MAINTENANCE

The Cold Chain Data Hackathon Workshop 
held in Nairobi, Kenya in 2024 illustrated the 
importance of combining foundational main-
tenance with data solutions to strengthen 
system resilience. Experiences from other 
countries highlight that digital tools are effec-
tive only when integrated with a solid main-
tenance foundation, for example:
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	f In Tanzania, real-time temperature 
monitoring succeeded because a 
maintenance infrastructure was in 
place, allowing swift responses to 
data-identified issues.

	f In Uganda, the inventory system, based 
on ODK-X (free, open-source software), 
improved data collection and coordination 
in low-resource settings but relied on 
trained technicians and established 
maintenance protocols.

These examples reinforce that while data 
and predictive maintenance tools enhance 
efficiency, they cannot replace essential main-
tenance capabilities.

KANO STATE’S FLOATING 
ASSEMBLY MODEL:  
AN INNOVATIVE SOLUTION

Kano State in Nigeria has pioneered the 
Floating Assembly Maintenance Model to 
address cold chain maintenance challenges, 
with impressive results. In December 2020, 
the equipment functionality rate stood at 
71%. After the Floating Assembly team 
began maintenance in three zones, this 
rate improved to 76% by December  2021, 
and between January and December  2022, 
equipment uptime reached a high of 89%. 
Although functionality dipped to 69% in 
2023, likely due to resource constraints 
and system strain, it rebounded to 85% by 
October 2024.

The Floating Assembly team, consisting 
of 10 mobile engineers equipped with vehi-
cles stocked with diagnostic tools and spare 
parts, enables efficient on-site repairs for over 
1,400  facilities. By establishing a founda-
tion of reliable equipment and a dedicated 
maintenance team, Kano’s Floating Assembly 
exemplifies the phased approach required to 
build resilient cold chain systems. This ini-
tial investment in maintenance capacity has 

driven sustainable improvements in function-
ality, even without advanced data tools. Now, 
with a strong foundation in place, Kano is 
well-positioned to integrate predictive analyt-
ics and real-time data tools as the next phases 
in cold chain optimization.

SCALING THE FLOATING 
ASSEMBLY MODEL

The Floating Assembly Maintenance Model 
could help optimize the cold chain main-
tenance landscape in Nigeria and beyond. 
Nigeria’s cold chain infrastructure follows 
a hierarchical structure, with the National 
Strategic Cold Store at the top, supported by 
six Zonal Cold Stores, State Cold Stores, and 
over 19,000 health facilities. This extensive 
network, staffed by technicians across mul-
tiple levels, ensures operational continuity 
but requires robust maintenance strategies to 
remain effective. 

Implementing the Floating Assembly 
Model at a national scale could strengthen 
each level of this structure, enhancing oper-
ational efficiency and reducing equipment 
downtime across all facility types.

To achieve this, it is essential to advocate 
for a well-resourced effort involving govern-
ment agencies, donor organizations, and local 
communities. By demonstrating the model’s 
success in Kano State and its potential to 
improve cold chain performance nationwide, 
Nigeria can take a leadership role in securing 
the necessary funding, equipment, and per-
sonnel to scale this model effectively.

Proper resourcing includes dedicated bud-
gets for spare parts, fuel, maintenance sup-
plies, and specialized training programs, as 
well as a reliable supply chain to ensure timely 
availability of necessary components. By 
investing in resources to support the Floating 
Assembly Model across Nigeria’s hierarchical 
infrastructure, the country can establish a 
robust, sustainable maintenance system for 
its cold chain network.
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From Ebola to Mpox:  
developing International 
Standards to accelerate  
vaccine development

Charlotte Barker, Commissioning Editor, Vaccine Insights, speaks 
to Giada Mattiuzzo, Head of Viral Vaccines (R&D), MHRA, 
about the importance of developing International Standards for 
vaccines, especially during public health emergencies. 

Vaccine Insights 2024; 3(7), 243–248

DOI: 10.18609/vac.2024.039

	Q How did you get involved in the vaccine field?

GM: I did my PhD in Molecular Virology at University College London, and soon after 
joined the National Institute for Biological Standards and Control (NIBSC), which is now 
part of the UK’s Medicines and Healthcare products Regulatory Agency (MHRA). My career 
in vaccines really kicked off with the Ebola outbreak in 2013–16, when I joined the response 
team involved in the production of standards. Afterward, I worked on the Zika virus, and 
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in 2019, we started collaborating with the Coalition for Epidemic Preparedness Innovations 
(CEPI) to develop physical standards for measuring antibody responses, ultimately supporting 
vaccine development.

	Q What are you working on right now?

GM: I lead the Viral Vaccine group in the Vaccines R&D Team at the Science Campus 
of MHRA. My group works on a range of projects, with a primary focus on assay development 
and standardization. We also support the MHRA’s statutory functions, such as control testing, 
and we are part of CEPI’s Centralized Laboratory Network.

Additionally, I am working on developing an International Standard for antibodies against 
monkeypox virus, which has become a high priority since the WHO declared Mpox a public 
health emergency of international concern in August 2024.

	Q What is the importance of reference materials in vaccine 
development?

GM: When developing a vaccine, it is critical to employ methods that can quantify and 
measure responses to the vaccine consistently within a group and ideally across globally 
distributed laboratories. A reference reagent serves as a standard that allows results from these 
assays to be expressed in the same units. Much of my work is done on behalf of the WHO to 
produce International Standards, which are the highest order of reference materials.

The International Standard serves as the primary calibrant and establishes a ‘common lan-
guage’ so everyone can express results in the same way, allowing for greater comparability. If 
such a standard is not available, comparing results becomes challenging. For instance, if one 
laboratory expresses the results in arbitrary units while another uses µg/ml, it is nearly impos-
sible to assess if they are obtaining the same results.

Without standardization, vaccine development progress slows down. Laboratories may still 
develop their own assays and produce results but comparing them becomes incredibly chal-
lenging. The critical role of an international standard is to enable comparability across different 
laboratories.

The use of reference materials helps to make informed decisions and enables an early under-
standing of vaccine efficiency in preclinical phases. For example, if a vaccine is not performing 
as expected, it can be removed from the pipeline, saving time and effort. Later, in Phase 3 or 
after the vaccine has been licensed, standardized immune response data can be gathered across 
studies. The data can be collected from other studies of different vaccines and, if sufficient, 
can help establish a correlate/surrogate of protection. This ‘magic number’ indicates a level 
of immune response that protects against infection and/or disease, which is useful to make 
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go/no-go decisions during vaccine development, reducing time and costs of the clinical phases, 
and can support licensing application.

	Q What are the key challenges in developing reference materials for 
vaccines and how can these be overcome?

GM: The value of an International Standard lies in the rigorous process employed to 
develop it, closely following the WHO guidelines. The entire process usually takes 2–3 years, 
and the primary bottleneck is sourcing the material that will serve as the candidate interna-
tional standard. For antibody standards, specifically, the ideal material should closely resemble 
clinical samples used in laboratories—usually serum from recovered or vaccinated people.

When dealing with emerging viruses and pandemics or epidemics, sourcing this mate-
rial becomes challenging, especially in regions directly affected by the outbreak, where local 
resources are understandably focused on public health needs rather than providing materials 
for standards development. Obtaining materials from where the outbreak is happening, and 
having reagents available is critical in being able to develop and validate assays. 

To overcome these hurdles, it would be ideal to establish an international infrastructure 
before epidemic or pandemic situations. Such a framework would include globally distributed 
organizations with pre-established legal agreements, which would dramatically expedite the 
sharing of these critical reagents.

	Q What are the key challenges during a public health emergency?

GM: The main challenge during a public health emergency is speed. If the world is to 
achieve the 100 Days Mission set out by CEPI, everything needs to be done to tight time-
frames. However, sourcing the materials and creating an international standard both take time. 
To address this challenge in an emergency, we have developed research reagents that resemble 
International Standards, although they lack the full characterization typical of such standards. 
We conduct in-house characterization, thereby offering a product in which we have confi-
dence. Once these research reagents are produced, we can include them in the multi-laboratory 
collaborative studies for evaluation of the candidate International Standard, which allows us 
to back-calibrate these reagents to the units of the International Standard. Consequently, once 
developers have acquired these reagents and run their assays, they can simply convert their 

“...it would be ideal to establish an international infrastructure 
before epidemic or pandemic situations.”



VACCINE INSIGHTS	

246 Vaccine Insights DOI: 10.18609/vac.2024.039

units to the international units, automatically translating their values to align with the stan-
dard. This process helps bridge the period prior to an International Standard being available. 

Regarding diagnostics, to detect the viral RNA of Ebola virus, instead of using the virus 
itself, we created virus-like particles based on an HIV structure, into which we inserted the 
Ebola virus genes. This construct was ideal for controlling the entire testing procedure, from 
RNA extraction to gene amplification. Crucially, this was a reference material that was safe to 
use in typical diagnostic laboratories as it does not have the properties of either Ebola virus 
or HIV. We later adapted this method for other pathogens, such as Lassa fever virus and 
SARS-CoV-2.

For antibody standards, we collect serum from convalescent individuals, treat it to minimise 
the risk of presence of harmful pathogens, aliquot it, test it in-house to ensure it contains suffi-
cient antibodies to generate a dose-response curve, and make it available as a research reagent. 
For Mpox, we developed such a research reagent in 2022, with CEPI’s support, which is now 
progressing toward becoming an international standard.

We are also proactive—we follow priority lists for pathogens of interest, and aim to prepare 
materials for potential use in case one of these pathogens, or a closely related one, emerges to 
be of public health concern. 

	Q How is the vaccine field developing, and what advances do you 
hope to see in the future, especially regarding assay development 
and standardization? 

GM: The biggest shift has been in the approach of moving from response to prepared-
ness. Another change relates to the priority pathogen lists. The latest WHO R&D Blueprint 
priority list emphasizes virus families rather than focusing on specific pathogens, although 
prototypes for each family have been listed. There is a growing awareness that the next outbreak 
may not come from a known virus but rather an unknown but related one. Therefore, prepar-
ing in terms of virus families enables us to have enough information to respond promptly to a 
new, related pathogen. 

Regarding novel vaccine platforms, we are all exploring ways to act quickly, with mRNA 
emerging as a vaccine platform which can be developed at pace. Although promising, it may 
not be the perfect platform for every specific pathogen. Therefore, extensive studies must 
be conducted in advance of an outbreak to determine which platform is best suited to elicit 
the best immune response for a given pathogen, ensuring we have this information ahead 
of time.

“There is a growing awareness that the next outbreak may not 
come from a known virus but rather an unknown but related one.”
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From a biological standardization perspective, we aim to strengthen the collaborations we 
currently have. We are fortunate to work on behalf of the WHO, which facilitates excellent 
collaborations with organizations around the globe. When these organizations participate in 
our studies, we do not provide any compensation—they invest their time and resources to be 
part of projects that are recognised as important for public health.

CEPI has introduced us to many potential donors of materials, usually large organizations. 
We must not forget the individuals who donate their blood to assist us, however. There is a 
growing understanding that what we do is important because it expedites research, accelerates 
assay development, and ultimately increases the speed at which vaccines become available to 
patients.

	Q What projects will you work on in the next few years?

GM: Collaborating with CEPI’s Centralized Laboratory Network to develop standards 
and achieve harmonization in the industry has been incredible, and we will continue to work 
together. The aim is to develop assays quickly and ensure that no matter which laboratory 
receives the clinical sample, they all achieve the same results. Currently, we are working on 
one of the top priority pathogens, the Lassa fever virus, but we aim to continue to collaborate 
on other pathogens in the future as well, to continue our support for vaccine and diagnostic 
development and use.
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